
vctrs: Creating custom vector
classes with the vctrs package

Jesse Sadler
Loyola Marymount University

@vivalosburros
jessesadler.com
github.com/jessesadler

Slides: jessesadler.com/slides/RStudio2020.pdf

Problem space

• Three separate units make up one
value

• The units have non-decimal bases
• Need to use compound-unit

arithmetic to normalize values
• The non-decimal bases differed

by currency

Normalize a numeric vector of length 3
normalize <- function(x) {
 pounds <- x[[1]] + ((x[[2]] + x[[3]] %/%
 12) %/% 20)
 shillings <- (x[[2]] + x[[3]] %/% 12) %% 20
 pence <- x[[3]] %% 12

 c(pounds, shillings, pence)
}

normalize(c(132, 53, 35))
#> [1] 134 15 11

Simple normalization function
Fixed bases of 20s. and 12d.

lsd <- function(x, bases = c(20, 12)) {
 structure(x,
 class = "lsd",
 bases = bases)
}

Create an S3 class for
non-decimal currencies

lsd(c(134, 15, 11))
#> [1] 134 15 11
#> attr(,"class")
#> [1] "lsd"
#> attr(,"bases")
#> [1] 20 12

lsd <- function(x, bases = c(20, 12)) {
 structure(x,
 class = "lsd",
 bases = bases)
}

Create an S3 class for
non-decimal currencies

lsd(c(134, 15, 11))
#> [1] 134 15 11
#> attr(,"class")
#> [1] "lsd"
#> attr(,"bases")
#> [1] 20 12

Create an S3 class for non-decimal currencies

Use lists instead of vectors to have multiple
values
Change normalization method
What other methods do we need?

To-do list

Print
Concatenate
Subset

Arithmetic operators

Mathematical functions

Casting to other classes

Plots

Create an S3 class for non-decimal currencies

Use lists instead of vectors to have multiple
values
Change normalization method
What other methods do we need?

To-do list

Print
Concatenate
Subset

Arithmetic operators

Mathematical functions

Casting to other classes

Plots

What else do I have to do? 🤯😩

https://vctrs.r-lib.org

Goals of vctrs

• Type stability

• Size stability

• Make it easier to build new S3 classes

What do you get by using vctrs?

• Clear development path for creating an S3 class

• Consistency with base R functionality

• Integration with the tidyverse

Goals for the talk

• Why you might want to create your own S3 class

• Why you should use vctrs

• Point you to how you can do it

debvctrs
Why and how to use vctrs

• debvctrs example package on GitHub:
- github.com/jessesadler/debvctrs

• Simplified version of debkeepr:
- jessesadler.github.io/debkeepr

• Step-by-step guide to building S3-vector classes
with vctrs
- Use in tandem with vctrs S3 vignette
- https://vctrs.r-lib.org/articles/s3-vector

Creating S3 classes with vctrs

1. Creation of the class

2. Coercion: implicit transformation of a class: c()

3. Casting: explicit transformation of a class: as.numeric()

4. Equality and comparison: >, <, ==, etc.

5. Mathematical functions: sum(), mean(), etc.

6. Arithmetic operations: +, -, *, /, etc.

Creating S3 classes with vctrs
based on double vector

1. Creation of the class

2. Coercion: implicit transformation of a class: c()

3. Casting: explicit transformation of a class: as.numeric()

4. Equality and comparison: >, <, ==, etc.

5. Mathematical functions: sum(), mean(), etc.

6. Arithmetic operations: +, -, *, /, etc.

debvctrs R scripts
github.com/jessesadler/debvctrs

Problem space

• Three separate units make up one
value

• The units have non-decimal bases
• Need to use compound-unit

arithmetic to normalize values
• The non-decimal bases differed

by currency

Design principles

• A class that maintains the
tripartite structure of non-
decimal currencies

• Tracks the bases of shillings
and pence units

• Vectors with different bases
cannot be combined

• Decimalized class as fall back
• Tracks the bases of shillings and

pence units
• Vectors with different bases

cannot be combined
• Choose and track unit

represented by decimalized class
• Vectors with different units can be

combined but need coercion path

deb_lsd deb_decimal

1. Creation
01.1-decimal-class.R, 01.2-lsd-class.r, and 01.3-check.R

1. Constructor: new_lsd() and new_decimal()

2. Helper: deb_lsd() and deb_decimal()

3. Formally declare S3 class: setOldClass()

4. Attribute access: deb_bases() and deb_unit()

5. Class check: deb_is_lsd() and deb_is_decimal()

6. Format method

7. Abbreviated name type

1. Creation
01.1-decimal-class.R, 01.2-lsd-class.r, and 01.3-check.R

1. Constructor
new_decimal <- function(x = double(),
 unit = c("l", "s", "d"),
 bases = c(20L, 12L)) {

 vctrs::new_vctr(.data = x,
 unit = unit,
 bases = bases,
 class = "deb_decimal",
 inherit_base_type = TRUE)
}

1. Constructor
new_lsd <- function(l = double(),
 s = double(),
 d = double(),
 bases = c(20L, 12L)) {

 vctrs::new_rcrd(list(l = l, s = s, d = d),
 bases = bases,
 class = "deb_lsd")
}

deb_lsd() deb_decimal()

1. Creation
01.1-decimal-class.R, 01.2-lsd-class.r, and 01.3-check.R

1. Constructor
new_decimal <- function(x = double(),
 unit = c("l", "s", "d"),
 bases = c(20L, 12L)) {

 vctrs::new_vctr(.data = x,
 unit = unit,
 bases = bases,
 class = "deb_decimal",
 inherit_base_type = TRUE)
}

1. Constructor
new_lsd <- function(l = double(),
 s = double(),
 d = double(),
 bases = c(20L, 12L)) {

 vctrs::new_rcrd(list(l = l, s = s, d = d),
 bases = bases,
 class = "deb_lsd")
}

deb_lsd() deb_decimal()Arguments

Creation of class

Structure of the classes

deb_lsd(l = c(17, 32, 18),
 s = c(16, 7, 12),
 d = c(6, 9, 3))

#> <deb_lsd[3]>
#> [1] 17:16s:6d 32:7s:9d
#> [3] 18:12s:3d
#> # Bases: 20s 12d

deb_decimal(x = c(17.8250,
 32.3875,
 18.6125))

#> <deb_decimal[3]>
#> [1] 17.8250 32.3875
#> [3] 18.6125
#> # Unit: pounds
#> # Bases: 20s 12d

deb_lsd() deb_decimal()

Structure of the classes

deb_lsd(l = c(17, 32, 18),
 s = c(16, 7, 12),
 d = c(6, 9, 3))

#> <deb_lsd[3]>
#> [1] 17:16s:6d 32:7s:9d
#> [3] 18:12s:3d
#> # Bases: 20s 12d

deb_decimal(x = c(17.8250,
 32.3875,
 18.6125))

#> <deb_decimal[3]>
#> [1] 17.8250 32.3875
#> [3] 18.6125
#> # Unit: pounds
#> # Bases: 20s 12d

record-style vector double vector

Printing methods
Bases attribute

Unit attribute

deb_lsd() deb_decimal()

Both work natively in a tibble

tibble(lsd = deb_lsd(l = c(17, 32, 18),
 s = c(16, 7, 12),
 d = c(6, 9, 3)),
 decimal = deb_decimal(x = c(17.8250,
 32.3875,
 18.6125)))
#> # A tibble: 3 x 2
#> lsd decimal
#> <lsd[20s:12d]> <l[20s:12d]>
#> 1 17:16s:6d 17.8250
#> 2 32:7s:9d 32.3875
#> 3 18:12s:3d 18.6125

Coercion and casting with vctrs

1. Creation of the class

2. Coercion: implicit transformation of a class: c()

3. Casting: explicit transformation of a class: as.numeric()

4. Equality and comparison: >, <, ==, etc.

5. Mathematical functions: sum(), mean(), etc.

6. Arithmetic operations: +, -, *, /, etc.

Coercion and casting workflow

1. Boilerplate
• Define method for class
• Default method for class for incompatible inputs

2. Methods within the class

3. Methods with compatible classes

Coercion and casting

• Coercion looks for the common type:
vec_ptype2(x, y)

• Casting does the actual transformation:
vec_cast(x, to)

• Casting makes comparison between classes
possible

Design choices: coercion hierarchy

double() deb_decimal() deb_lsd()

Define possibilities and implement
hierarchy with vec_ptype2(x, y)

Implementation with casting
Example of deb_decimal() to deb_lsd()

vec_cast.deb_lsd.deb_decimal <- function(x, to, ...) {
 bases_equal(x, to) # ensure that bases are equal
 # if else depending on the unit
 if (deb_unit(x) == "l") {
 lsd <- deb_lsd(x, 0, 0, bases = deb_bases(x))
 } else if (deb_unit(x) == "s") {
 lsd <- deb_lsd(0, x, 0, bases = deb_bases(x))
 } else if (deb_unit(x) == "d") {
 lsd <- deb_lsd(0, 0, x, bases = deb_bases(x))
 }
 # Normalize the deb_lsd() vector
 deb_normalize(lsd)
}

Put it all together
Combine multiple types
c(deb_lsd(134, 15, 11), deb_decimal(14.875), 28.525)
#> <deb_lsd[3]>
#> [1] 134:15s:11d 14:17s:6d 28:10s:6d
#> # Bases: 20s 12d

Compare different types
deb_decimal(3255, unit = "d") > deb_lsd(15, 13, 4)
#> [1] FALSE

Arithmetic with different types
deb_decimal(3255, unit = "d") + deb_lsd(15, 13, 4)
#> <deb_lsd[1]>
#> [1] 29:4s:7d
#> # Bases: 20s 12d

You can create your own S3 vector

• Extend the capabilities of R
to fit your own needs

• vctrs provides a clear
development path

• Slides: jessesadler.com/slides/RStudio2020.pdf

• debvctrs: github.com/jessesadler/debvctrs

• debkeepr: jessesadler.github.io/debkeepr

• vctrs websitesite: vctrs.r-lib.org
• The S3 vignette is particularly helpful

• Hadley Wickham, Advanced R: Chapter 13: S3

Resources

Jesse Sadler
Twitter: @vivalosburros
website: jessesadler.com
GitHub: github.com/jessesadler

